
jared

Week 11 Homework
New stuff learned this week:

Web Servers:
a web server is a computer program that listens on a port for inbound HTTP requests and returns
HTTP responses.
nginx is the most popular current web-server program, pronounced “engine X”
a really simple, and fast strategy for web servers is to respond to HTTP GET requests by trying to
hand back premade HTML files. This is how I have our server set up currently, and it’s what the
try files line in the nginx config means.
web servers can also make up new HTML on the fly when responding to a request — this is
slower but more powerful
I configured nginx to have your subdomains WEB ROOT to be the ~/www/ folder — that’s where
nginx will look when it is trying to find files to match requests

URLs:
a URL stands for “Uniform Resource Locator”, but it’s easier to think of it as an address on the
internet to look for something, an example is http://google.com/cats
the http:// or https:// portion of a URL is called a SCHEME
something like google.com or howtocomputer.link or harvard.edu is called just a DOMAIN, or
sometimes a REGISTERABLE DOMAIN (because that’s what normal people can buy, or register
as their own)
the .com or .link or .edu or .co.uk part that comes at the very end of a domain is called the
TOP-LEVEL DOMAIN (TLD)
anything that comes between the scheme and the domain is called a subdomain:
http://<subdomain>.google.com — in fact if you’ve ever been to a site that started with www like
http://www.duolingo.com — the www part is technically a subdomain.

Vim:
4 common operators are:

d - delete
c - change (delete then go automatically into insert mode)
y - yank (copy)
v - visual (select visually, or highlight)

a few really useful text objects are:
w - word

p - paragraph
t - HTML tag

two special (and super useful!!) quantifiers for text objects are:
i - inner (matches a whole text object, no matter where you are in it)
a - around (matches a whole text object + a space or blank line, no matter where you are in

it)
you can combine operators, motions, and text objects in a very intuitive and extremely powerful
way, here are some examples:

ciw - Change Inner Word
daw - Delete Around Word
yap - Yank Around Paragraph
dit - Delete Inside (HTML) Tag
vip - Visually-select Inner Paragraph

the f and t operators let you jump to, or right before a character
so fx would jump you onto the first x in the line
and tx would jump you right before the first x in the line

you can use f and t with the operators too, like so:
dfx - Delete through the first Found X character
ctx - Change up To the first X character

if you’ve done something like ciw and then typed a word and gone back into regular mode, the
. character REPEATS the last edit you made

Regular Expressions:
the \d special symbol means “match any digit” — it’s exactly the same as [0-9]
if you want to specify exactly how many of something you want to match, you can do that with a
special quantifier {<number>} like o{3} will match only if there are exactly 3 o characters in a
row
if you want to specify a range of numbers, you can do so with two numbers, separated by a
comma, like 0{3,5} which will match between 3 and 5 consecutive 0 characters
if you want to express something like 3 or MORE matches, you can use the comma but leave off
the last number, like 0{3,} — that would be the same as like writing 0{3,9999999999}
the {} quantifier operates not only on individual characters, but on whatever the preceding token
is, which can be a character, a character class, a parens group, etc., like these examples:

f{3}

[a-f]{2,7}

(foo|bar){5}

HTML:
the html tag creates an Unordered List
the html tag creates an Ordered List
both list types have children of — List Items
example: Item 1Item 2 (but would be better to put each tag on a
new line, which I can’t do in this Slack post)

Touch Typing Links:
http://touchtype.co
https://www.how-to-type.com

Homework plan:
A little lighter this week because of Thanksgiving

1 day reviewing and creating a few more flash cards
1 days CLI/Regex practice
1 day vim practice
1 day touch-typing practice
1 day WEB practice

Homework day 1:
do flashcard assignment (see below)
touch typing practice

Homework day 2:
vimtutor - Everything except Lesson 7 (but USE your new vim skillz)
CLI practice

Homework day 3:
Web Practice

Flash Card Assignment
Review all of your old cards
Make a new REGEX card covering {3} and {2,5} quantifiers
Make 9 new VIM cards covering:

f<char>

t<char>

ciw

caw

cit

yap

viw

daw

.

CLI Homework:

IMPORTANT NOTE: sed doesn’t support the \d character, so instead of using sed -E I want you
to use perl -pe — perl is another program that can work like sed and it does support \d — the
rest of the syntax is exactly the same: perl -pe 's/foo/bar/gi' is exactly the same as sed -E
's/foo/bar/gi'

1. slowly and carefully review the “Regular Expression” portion of the “New stuff learned this week”
above ^^^.

2. ssh into your home dir and make a week11/ directory
3. copy the numbers.txt and letters.txt files from a folder called regex which is inside the

computers root dir into your week11/ dir
4. cat out the numbers.txt file and then use perl (and the \d token, plus the other new stuff

learned this week) to make it so line 1 reads Here is my phone number #secret#
5. change your regular expression so that it also changes the full phone number including area code

on line 2 to #secret# - so that line 2 should now read My landline is #secret# — and the first
line should still be the same as in step 3 above.

6. change your regex again so that it matches and replaces ALL the phone numbers on the first 5
lines with #secret#

7. Extra Credit: make a perl expression so that on the first 4 lines, all of the phone numbers
are formatted easier to read like (555) 111-2222 - but the numbers should be preserved (so, for
instance, line 4 should read Jenny's phone number is (555) 867-5309)

8. make a new perl expression that matches social security numbers (SSN) — (one of the lines of
the text explains how they are formatted) - replace the TWO valid social security numbers with
###-##-#### - but none of the phone numbers should be changed.

9. repeat step 9, but this time, also make it so that the XXX-XX-XXXX on line 9 is also changed to
###-##-####

10. write a new perl expression that changes the three year dates on the second to last line with
#YEAR# — but it should not change any of the other numbers in the whole file, including 5002
and 300 and the phone numbers, etc.

11. now, switch to cat ing out the letters.txt file, and write a regular expression with perl that
changes line 1 to exactly I l@ve y@mmy food — notice how food is unchanged.

12. Next, change your expression so line 2 is changed to read Jared Henderson likes jimjam. —
use an empty replacement // and make sure the line still ends with jimjam.

13. Finally, again using an empty replacement, write a regular expression so that the characters
garbling up the middle of the word on the last line get removed, resulting in the last line reading: I
was born in Pontiac, MI.

Web Homework
1. carefully and slowly review the HTML portion of New stuff we learned this week above ^^^
2. ssh into your home dir, and then cd into the www dir
3. you should still have boilerplate.html in that directory — cat it out one time to remind yourself

what the different parts of a valid HTML page are
4. now, create a brand new file called list.html using vim and start by typing FROM SCRATCH a

valid HTML file (including a doctype, html, head, title, body tags) — you can close vim and cat out
the boilerplate a couple times if you need to refresh yourself. Give the new file a <title> of “My
List” and a <h1> tag that says “Groceries to buy:“. Save the file and view it in a browser.

5. edit the list.html file so that under the <h1> tag it contains an unordered list containing a
minimum of 10 things to buy at the grocery store. — be sure to use your vim skills to do things
like copy/paste lines yyp and ciw or cit . Save the file and view your list.html file in a
browser.

6. quit out of vim, and using a shell command, copy the list.html into a new file called vim.html
— then open that file in vim

7. inside of vim - change the <title> tag and the <h1> so that they both read Steps to master
vim

8. then, change the unordered list into an ordered list.
9. now, try, with ONE command in vim to remove all of the tags

10. make at least 5 new tags describing steps to master vim
11. save the file and view it in a browser — compare it to your list.html webpage — how do

browsers render (draw on screen) the difference between an unordered and an ordered list?
12. at the bottom of each of the two files you made in this homework session, add a link from one to

the other, so your list.html file should have a clickable bit of text that says Check out my steps
to master vim! that links over to the vim.html file, and your vim.html file should have a link that
reads Here's my grocery list — and they should both be clickable and work in a browser to
navigate back and forth between the two pages. (reminder a link looks like this: <a href="
<URL>">Some text where <URL> is the thing you’re linking TO)
Extra credit add to one of your web pages a few links that go to other students’ vim and list
html pages.

