
jared

Week 10 Homework

New stuff learned this week:

Regular Expressions

the [and] surrounding characters creates a character class, (or character set) which match
any of the characters in the set, so [aeiouy] would match any vowel
character sets are a logical unit so they can be modified by the metacharacters * and + , so for
example [ae]+ means “match one or more characters that are either a or e ”
character classes can take ranges, like [A-Z] or [0-9] .
character class ranges can be combined, like [a-z0-9]
you can mix ranges and individual characters in a character class, so for example [0-9_] would
match any digit or the underschore character _
the case insensitive flag /i applies to character classes, so /[ab]/i is the same thing as writing
/[AaBb]/
the ^ character at the beginning of a character class negates. That means, that the character set
matches everything EXCEPT what it would normally match. So [^abc] would match everything
except the characters a, b, and c, and [^0-9] would match everything except digits.
inside of a character class, most normal metacharacters represent their literal value: like . and
* and + have no special meaning, they mean their actual character, and do not need to be
escaped.

HTML

HTML is a markup language, but not a programming language
HTML is extremely forgiving, it doesn’t throw errors, and tries to make sense of whatever you
write, even if it’s not technically correct.
whitespace (spaces, tabs, and newlines) in HTML is basically ignored. A single space, tab, or
return is all treated as a single space, and adding more spaces or tabs has no effect. So Foo bar
is exactly the same as Foo bar
HTML is composed of tags, which generally open, have some inner content (or “children”) and
then close, like <i>foobar</i>
some HTML tags don’t have any inner content, so they self close, like so:

HTML tags can have pairs of variable-like data attached to them called attributes. For instance
 denotes an img tag with an attribute src which has the value of cat.jpg
the p HTML tag means a paragraph: <p>Hello world!</p>
the h1 - h6 tags mean headers with decreasing levels of importance, like <h1>Main title!</h1>
and <h3>Not as important</h3> and <h6>Goat banjo unimportant</h6>

the i tag basically means italic, the b tag basically means bold.
a correctly formed HTML document has:

a doctype on the first line: <!DOCTYPE html>
then a <html>…</html> section with everything else inside it
then a <head></head> section (inside the html tag)
then a a <body>…</body> section (also inside html)

Touch Typing Links:

http://touchtype.co
https://www.how-to-type.com

Homework plan:

1 day reviewing and creating a few more flash cards
2 days CLI practice
1 day vim practice
2 days touch-typing practice
2 days WEB practice
watch CCCS#9 — just once

Homework day 1:

do flashcard assignment (see below)
touch typing practice
vimtutor - Everything except Lesson 7

Homework day 2:

CLI practice #1
Web practice #1

Homework day 3:

touch typing practice
CLI Practice #2

Homework day 4:

Web practice #2
watch CCCS#9

Flash Card Assignment

Review all of your old cards
Make two new REGEX flash cards for character classes — one for normal usage, and one for
negated usage
Make a new set of cards for HTML (put that in the upper left) covering these tags

<html>
<head>
<title>
<body>
<h1> … through <h6> (one card can cover all six)
<p>
<i>

CLI Homework #1

1. carefully review the “New Stuff Learned this Week” Regular Expressions section of this document

2. ssh into your home dir and create a new directory called week10 and then cd into it
3. copy the file char.txt from the root directory of the computer down into your week10 file, and

cat it out so you can see what it says.
4. using cat and sed plus a character class, print out the text of char.txt so that all the usages of

the word gray or grey are changed to blue except for the last two words graey and greay (do
not use the | alternation, only use […] character classes)

5. repeat step 4, but this time also include the last two misspellings.
6. Repeat step 5, but this time, change the words to r<something>d , keeping the original vowels,

so that the line reads Rad can be spelled red or rad but not raed or read.
7. Change your sed expression so that line two gets fixed and the fourth word becomes stepped

— you must use a character class with a range
8. Change your sed expression so that lines 4 and 5 (with the pointers) both become FOOBAR
9. Change your sed expression so that it strips out all of the digits from the last line, revealing the

secret message!
10. Change your sed expression so that everything that is NOT a digit is stripped from the last line,

resulting in 5992432312114233433398992882

CLI Homework #2

1. ssh into your home dir and cd into the week10 dir

2. copy the file urls.txt from the root directory of the computer down into your week10 file, and
cat it out so you can see what it says.

3. using cat and piping to sed write a regular expression so that line 1 becomes Web page
(FOOBAR) (FOOBAR)

4. change your expression and use backreferences to make line one now become Web page
(./index.html) (./bar.html)

5. change your expression now so line 2 becomes PDF: [] banana
6. change your expression now so line 2 becomes PDF: none
7. change your expression now so line 2 becomes blank
8. change your expression now so that the href and src attributes on lines 3 and 4 are both

changed to FOO like this href="FOO" and src="FOO" but make sure that NONE of the other lines

are changed!
9. make a new sed expression so that line 5 reads Images: Foo.jpg cat.gif cat.png

10. Extra credit: make a new sed expression so that line 5 reads Images: <i>Foo.jpg</i>
<i>cat.gif</i> <i>cat.png</i> (hint: you’ll need to escape the / character in your replacement
string.

11. Using a negated character class make a sed expression that turns the last line into <p>Film
flam</p>

Web Homework #1

1. carefully review the “New Stuff Learned this Week” HTML section of this document
2. ssh into your home dir
3. create a new directory called www and move into that dir
4. use echo and a redirect to create a file called index.html with the text: Testing, 1, 2, 3
5. open a browser and navigate to http://<yourname>.howtocomputer.link (substituting your

lowercase slack name for <yourname>) — you should see your message in the browser!
6. now, open the index.html file with vim and rebuild the html page from scratch, so that it is a

totally correct HTML page, be sure to include:
a. doctype
b. html tag
c. head tag with a title tag (check that you can see your title in the browsers tab)
d. body tag with some content

7. now, edit the index.html page (remember, you don’t need to close vim when you’re editing the
file and checking how it looks in your browser, you can just do :w<enter> to write without closing)

— so that it has 6 headings, levels from <h1> through <h6> , each with the text I am a level
<number> heading! where <number> is the heading level, like <h3>I am a level 3 heading!</h3> .
View the outcome in the browser to see what the different headings look like.

8. next, in between each heading, add a paragraph tag with some text in it. Save, and view the page
again. you should see a block of text in between each heading.

9. next, wrap bits of your paragraph text in 3 different tags, save, and view in the browser to see
what affect they have on the appearance of your webpage. The three tags are: <i> and

<code>
10. exit vim and copy the index.html file into a file called foo.html then open

http://<yourname>.howtocomputer.link/foo.html in your browser. It should look exactly the same
as the other file.

11. open the foo.html file in vim and make a few modifications to it, save your changes, and view
in a browser.

12. close vim, and then in one command make 3 nested directories inside of www of herp/derp/goat
13. cd down into the goat/ dir
14. copy the foo.html file you made and edited in steps 9-10 into your current directory (goat/)
15. with vim edit the foo.html file you just copied into your current dir, changing the title tag and

the h1 tag to include the word GOAT .
16. open your browser and type an address in that will let you see this new webpage.
17. Extra Credit : if you know a bunch of HTML/CSS from Khan or somewhere else, make a new

web-page and try to get a couple of things working:
a. a <style> tag in the head element
b. some fancy css styling to make your page look snazzy!
c. an external css stylesheet
d. an ordered list
e. an unordered list
f. a link to one of your other pages (using a FULL url including http://)
g. a link to one of your other pages (using a relative url)

Web Homework #2

1. ssh into your home dir, and cd into the www dir
2. list out the contents of the computers root dir and then, list out the contents of the www-assets/

dir inside of the root dir
3. in one command, copy all three files from the www-assets/ dir down in your current working

directory.
4. now, make a copy of the boilerplate.html file (which should now exist in your www/ dir) and

name it cat.html
5. open the cat.html file with vim and change the title tag to “Cats are Cute”
6. in the body section, make a headline that reads This cat is a cutie.
7. below your headline, insert an img tag that displays the cat.jpg file you copied into your www/

dir in step 3. (hint: review the “new stuff learned this week” if you need a clue how to do this)
8. save your cat.html and enter a URL into your browser that will let you see your webpage about

the cute cat (it will start with http://<yourname>.howtocomputer.link)
9. Next, edit the cat.html file again and add a paragraph of text below the image with some text

about the cat from the picture. Save and view in a browser again.
10. Exit vim and make a new directory called animals inside your current working directory.
11. Still from the www/ dir, move ONLY the cat.html file into animals/ dir you just created
12. Now, change the URL in your browser so you can view your cat.html webpage at it’s new

location. When you do, the image will be broken, it won’t display.
13. Figure out why the image doesn’t load, and fix it.

14. cd into the animals/ dir
15. use cat and a pipe and sed to copy the contents of the cat.html file into a new file called

goat.html using sed to change all the instances of cat or Cat in the HTML to goat and Goat
. You should not use vim OR the cp command to do this, just cat sed and a redirect, with
some pipes. (you’ll actually need TWO sed expressions piped together to preserve the
uppercase/lowercase)

16. cat out the contents of your new goat.html file and see if your sed expression worked. If it
doesn’t look right, rm the file and repeat step 14 till you get it right.

17. view the goat.html file in your browser, you should see a picture of a goat!
18. copy the boilerplate.html file from your ~/www folder down into your current working directory,

renaming it animals.html in the process.
19. edit the animals.html file in vim and edit the body tag so that you have a single p tag that has

the sentence “I like cats and goats”. Save the file and view animals.html in your browser.
20. continue editing animals.html and now wrap the word cats with a a tag — the a tag creates a

hyperlink between webpages. The syntax is like this some text .
Wrap the word cats with an a tag, and have the URL (inside the href attribute) point to the full
web URL of your cats.html webpage. Save the file and view it in a browser. You should be able
to click on the word cats and have your browser change to your cat.html webpage.

21. Repeat step 20, but this time, make the word goats link to your goat.html file. Save and view in
your browser, testing that the link works.

22. Edit the foo.html file you made in steps 13-14 of the first Web homework, adding a paragraph
that says Check out my web page about animals! . Make the words web page link to your
animals.html page. Save and test in a browser.

23. Edit the foo.html file from step 22 again, and change the href attribute of the a tag so that it
uses a relative path to the animals.html file. That means the href attribute should not start with
http://… (hint: use your relative path skills from CLI to solve this, it works the same!)

