
jared

Week 08 Homework

New stuff learned this week:

the ~/.bashrc file is like preferences for your bash shell — all the code in it gets run every time

you start up bash

I snuck a line into your .bashrc that puts bash into vi mode, which makes it work mostly like our

beloved vim — you can hit <ESC> to get into normal mode and use most vim features to edit

your shell commands

variables in bash are created by typing FOO=bar where FOO is the variable name and bar is the

value. You can also do FOO="Jared is cool" — using double-quotes to surround a string that

has spaces in it.

variables in bash are accessed by using $<variable-name> like echo $FOO , and variables can be

used alongside other text inside a string, like echo "I like $FOO"

there are some built-in shell variables you can access, like $HOME $SHELL $USER $OSTYPE

every bash command exits with a code of either 0 for success , or 1 (or another non-zero

number) for failure .

you can access the exit code of the last command being run with a special variable called $? —

like echo $?

you can make a simple bash script by creating a file with lines of bash commands in it, then you

can execute (meaning “run”) that script by typing bash <path-to-script-file> — by convention,

shell scripts are given the extension .sh

the sed command is a stream editor — it allows you to make changes line by line to text files as

you’re piping them to and from things. The basic syntax is sed -E 's/<regular-
expression>/<replacement>/<optional-flags>' — so for instance sed -E 's/goat/chicken/'

would replace the word “goat” with “chicken” >

Regular Expressions are like a “mini-language” that is used by almost all computer languages

and many shell commands, they are used to find and sometimes replace patterns in text files.

Regular Expressions make use of meta-characters to represent concepts, giving a lot of power

and flexibility

the . metacharacter means “match any character”

the ^ metacharacter means “match the beginning of the line”

the $ metacharacter means “match the end of the line”

the * metacharacter means “match zero or more of the character before it”

the + metacharacter means “match one or more of the character before it”

the ? metacharacter means “the character before it is optional”

Touch Typing Links:

http://touchtype.co

https://www.how-to-type.com

Homework plan:

1 day creating more flash cards

1 day reviewing all flash cards

2 days CLI practice

1 day vim practice

2 days touch-typing practice

watch CCCS#7 — definitely twice

Homework day 1:

do flashcard assignment (see below)

touch typing practice

Homework day 2:

CLI practice #1

watch CCCS#7

Homework day 3:

touch typing practice

vimtutor — Everything except Lesson 7

Homework day 4:

CLI practice #2

watch CCCS#7

review all your flash cards

--

Flashcard assignment

First, if you didn’t make your flashcards from last week, go back and do them. Then:

1. spend a minute or two reviewing your flash cards

2. on the cards you’ve already made, add the word SHELL in the upper left corner — this is to add a

context, so that you don’t get confused later when there are things like how . means one thing

in the shell (my current directory) and another thing in regular expressions (match any single

character).

3. Make a small pile of new flash-cards, with the word REGEXP in the upper left corner (short for

Regular Expressions), make one card for each of the following meta-character symbols we went

over. Put the definition on the back of the card:

a. ^
b. $

c. .

d. *

e. +

f. ?

CLI Practice #1

1. carefully review the “new stuff we learned this week” section above

2. ssh into your home dir

3. make a new directory called week8 and cd down into it

4. Make a bash variable called NAME that contains your first name

5. use the echo command to print your variable to standard out

6. use the echo command and your variable to print My name is <yourname> to standard out.

7. Make another variable called FULLNAME that contains your first, middle, and last name, separated

by spaces. (hint, you’ll need to use double-quotes for this one)

8. use both of your variables to print to standard out the phrase: My name is <your-full-name>, but
you can call me <first-name>!

9. Redo the last command, but this time, send the sentence into a file called name.txt

10. Use one of the special, built-in variables bash gives you to echo the sentence The path to my
home directory is <home-dir-path>.

11. Redo the above command, but this time append the text to the name.txt file.

12. Type another command, using another built-in variable, that will append another sentence to the

same file that reads: My username is <your-user-name>.

13. Rename the name.txt file to about-me.txt

14. Type a command to print the contents of about-me.txt to standard out, it should have 3 lines of

text on it.

15. Open about-me.txt in vim and add two new lines to the end: one saying My favorite color is
<your-fav-color>. and another saying My birthday is <your-birthday>. Then, save and close

the file.

16. cat out the contents of about-me.txt and pipe the result into sed , using sed to replace your

first name with the name “Bob”. You should see your file’s contents sent to standard out, with the

name “Bob” swapped in for some places.

17. Redo the above command, but this time pipe it again to sed and use sed to replace the word

is with is not on each line. It should now say strange things like “My name is not Bob” and

“My favorite color is not blue”, etc.

18. Redo the above command, but this time redirect the ouput into a file called false.txt

19. Type a command that will print the exit code of the last command to standard out.

20. Type a command that will produce an error, and then print out the exit code — it should be 1

21. Use echo and your knowledge of variables to print the following message to standard out: The
last command exited with the code <exit-code>.

CLI Practice #2

1. ssh into your home dir

2. mentally review how we talked about using <ESC> and vi mode in the shell, to edit shell

commands in a vim-like manner. As you do the exercises below, try to start practicing using vim

commands to edit and move around within your commands.

3. use ls and an absolute path, list out the contents of the directory one above you (you can’t use

.. — use an absolute path)

4. now use ls again, with an absolute path, to see what’s inside the regex folder, which you

should have seen in step 2

5. now, using the cp command, copy both the goats.txt and chickens.txt files from where you

found them, down into the week8 folder you made during practice #1. You should still be in your

home dir, and you can use relative paths for this step.

6. now change your directory down into week8 dir

7. cat out the contents of goats.txt so you can see whats inside

8. pipe the contents of goats.txt into sed and use a regular expression to change the word goats

to rabbits - but only on the second line, the one that says I like goats

9. Redo the above command, but change it slightly so that it also changes the third line, so it

becomes: Do you like rabbits? — if you do it right, only the second and third lines will be

changed.

10. Now, use a different regexp to change the word Goat (with a capital G) to Bear on the first and

last lines, but it should not change the word Goat on the line that says …a Goat named Josephus

11. Now, use sed to change every instance of the word goat in the whole file to whale — Make

sure you get the ones with a capital G and a lowercase g (the replacements can all be

lowercase whale - you don’t need to worry about getting W ’s)

12. Redo the last command, but change your regular expression so it also fixes where I misspelled

goat as groat on the last line.

13. Make a new regular expression that changes the word goatpack AND llamapack to beaverpack

. (hint: you’ll probably need to match the word `to ` before the goatpack and beaverpack)

14. Make up your own regular expression that changes the text in some way, and redirect the output

to a file called silly.txt

15. copy your silly.txt file into my home dir (ubuntu), but change the name while you’re copying it

to <yourname>-silly.txt

16. cat out the chickens.txt file so you can read what’s in it.

17. pipe the contents of chickens.txt into sed , transforming every instance of Chicken , chickens

or chicken or chickens into wombat (hint, if you add i as a flag it makes the regex case-

insensitive, like this sed -E 's/foo/bar/i') (hint #2 — the pipe character | is itself a

metacharacter that we haven’t learned yet, so if you want to use it in your regexp to stand for the

literal character, you need to escape it by adding a backslash before it, like this sed -E
's/fo\|o/bar/')

18. repeat the last step, but modify your regexp so that it also catches the misspellings on line 2 and

3

19. use sed with a new regexp so that the last line of the file becomes Your DOG are DOG full of
DOG, DOG them out, OK DOG? (it’s ok if your regexp changes other lines too, just focus on the last

line).

20. Extra Credit — move into your home dir, and then, using the moby.txt file in the /home dir

(one dir above you), use a combination of head , tail and sed (or multiple invocations of sed)

to isolate a paragraph and transform the text in a funny way. When you’re done, paste the

command to produce it into Slack so we can try. We should be able to execute the command

from our home dir and see the same thing you saw. Don’t paste the silly text, paste the

command that produces it.

21. Extra Credit — You can assign multiple bash variables in a row, like NAME=Bob COLOR=blue

and you can then execute a command immediately after, like NAME=Bob COLOR=blue echo "I am
$NAME, I like the color $COLOR" . With this knowledge, make a shell script called madlib.sh

that echos out a sentence or two using variables. Write it so that other people can run a

command like this, and have a “madlibs”-like experience: ANIMAL=goat PLURAL_NOUN=fruits
PROPER_NAME=Josephus bash madlibs.sh When you’re done, post in slack where to find your file,

and what variables we need to fill in to make it work.

